
Genetics and population analysis

Co-sparse reduced-rank regression for association

analysis between imaging phenotypes

and genetic variants

Canhong Wen1, Hailong Ba1, Wenliang Pan2 and Meiyan Huang 3,4,*;

for the Alzheimer’s Disease Neuroimaging Initiative†

1International Institute of Finance, School of Management, University of Science and Technology of China, Hefei 230026, China,
2Department of Statistical Science, School of Mathematics, Sun Yat-Sen University, Guangzhou 510275, China, 3School of Biomedical

Engineering and 4Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou

510515, China

*To whom correspondence should be addressed.
†Data used in preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni.loni.us-

c.edu). As such, the investigators within the ADNI contributed to the design and implementation of ADNI and/or provided data but did not par-

ticipate in analysis or writing of this report. A complete listing of ADNI investigators can be found at: http://adni.loni.usc.edu/wp-content/

uploads/how_to_apply/ADNI_Acknowledgement_List: pdf.

Associate Editor: Bonnie Berger
Received on December 1, 2019; revised on May 22, 2020; editorial decision on July 11, 2020; accepted on July 14, 2020

Abstract

Motivation: The association analysis between genetic variants and imaging phenotypes must be carried out to
understand the inherited neuropsychiatric disorders via imaging genetic studies. Given the high dimensionality in
imaging and genetic data, traditional methods based on massive univariate regression entail large computational
cost and disregard many-to-many correlations between phenotypes and genetic variants. Several multivariate imag-
ing genetic methods have been proposed to alleviate the above problems. However, most of these methods are
based on the l1 penalty, which might cause the over-selection of variables and thus mislead scientists in analyzing
data from the field of neuroimaging genetics.

Results: To address these challenges in both statistics and computation, we propose a novel co-sparse reduced-
rank regression model that identifies complex correlations in a dimensional reduction manner. We developed an it-
erative algorithm based on a group primal dual-active set formulation to detect simultaneously important genetic
variants and imaging phenotypes efficiently and precisely via non-convex penalty. The simulation studies showed
that our method achieved accurate and stable performance in parameter estimation and variable selection. In real
application, the proposed approach successfully detected several novel Alzheimer’s disease-related genetic variants
and regions of interest, which indicate that our method may be a valuable statistical toolbox for imaging genetic
studies.

Availability and implementation: The R package csrrr, and the code for experiments in this article is available in
Github: https://github.com/hailongba/csrrr.

Contact: huangmeiyan16@163.com

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

With the development of biomedicine and clinical science, the
pathogenic mechanism of brain disorders must be studied from the
perspective of internal genetics. Many research projects have been

conducted around the world to generate massive high dimensional
and complex brain imaging data and genome sequence data [e.g. the

Alzheimer’s Disease Neuroimaging Initiative (ADNI)] (Durston,
2010; Gilmore et al., 2010). Therefore, brain imaging genetics has
gained more attention in recent years. A major task of imaging gen-
etics is to identify the relationships between the
phenotypes extracted from imaging data and genotypes, such as
single-nucleotide polymorphism (SNP); this process is expected to
discover the genetic basis of brain structure and function, thereby
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further offering help for the prediction, diagnosis and treatment of
various complex brain-related disorders, such as schizophrenia and
Alzheimer’s disease (AD) (Du et al., 2018; Hashimoto et al., 2015;
Saykin et al., 2015).

During the past decade, numerous studies on imaging genetics
have been proposed, in which the most recently method used was
genome-wide association study (GWAS). Traditional GWAS meth-
ods are based on the mass-univariate linear model. However, the as-
sociation between imaging phenotypes and genetic variants is a
complex many-to-many relationship. Thus, univariate analysis of
traditional GWAS is insufficient to address the complex relationship
between imaging and genetic data (Dudbridge, 2016; Li et al.,
2015). Moreover, running GWAS poses remarkable computational
challenges given the high dimensionality of imaging (millions of
brain locations) and genetic data (�106 known variants) (Huang
et al., 2017). To accelerate the calculation of GWAS, Huang et al.
(2015) proposed a fast voxel-wise genome-wide association analysis
framework. By treating the imaging phenotypes as a whole, Wen
et al. (2018) proposed the use of distance covariance to incorporate
the correlations in imaging phenotypes for GWAS to alleviate the
calculational cost. However, the above two methods are based on
univariate regression analysis. Thus, the correlations between imag-
ing phenotypes and genetic variants are ignored.

Several multivariate imaging genetic methods have been intro-
duced to overcome shortcomings in univariate regression analysis.
Among these methods, co-sparsity in imaging phenotypes and genet-
ic variants is generally assumed. A sparse canonical correlation ana-
lysis (SCCA) was developed to explore the correlation between two
high-dimensional datasets under the co-sparsity assumption (Witten
et al., 2009). However, SCCA only focuses on the correlation be-
tween the top two canonical correlation vectors and cannot find the
exact mapping model between two datasets. To overcome this prob-
lem, Ma et al. (2014) proposed a thresholding singular value decom-
position (TSVD) method by imposing sparse constraints on the left
and right singular vectors of the coefficient matrix. In this way, they
showed that the TSVD approach can realize co-sparsity in the
responses and predictors and retain a low-rank structure. An alter-
native to achieve co-sparsity is the use of the sparse version of the
reduced rank regression (RRR) model, which is a multivariate-to-
multivariate model with a low-rank constraint on the coefficient ma-
trix. To realize co-sparsity in RRR, Vounou et al. (2010) developed
a sparse RRR method by simplifying the RRR model to rank-one
models based on the assumption of diagonal covariance matrices in
phenotypes and genetic variants. However, this assumption is often
violated in practice (Kong et al., 2020; Zhu et al., 2014). To relieve
this problem, Zhu et al. (2014) established a Bayesian framework to
build a sparse version of RRR and applied it to an imaging genetics
study. Kong et al. (2020) proposed a low-rank linear regression
model to obtain a sparse estimate of the coefficient matrix based on
trace norm regularization. However, most existing methods achieve
co-sparsity via imposing l1-type norms as regularizer, which might
yield inadequate performance. The reason for the poor performance
lies in the l1 norm, which is a convex approximation of l0 norm and
introduces bias when the value is far from zero. Thus, methods
based on the l1 norm might cause bias in the estimation and thus
lead to the over-selection problem.

To address the above challenges, we propose a new co-sparse
RRR (CSRRR) model that simultaneously selects imaging pheno-
types and genetic variants via the l0 norm. However, variable selec-
tion via l0 norm corresponds to the well-known best subset selection
problem, which is thought to be NP-hard (Natarajan, 1995).
Recently, a primal-dual active set (PDAS) formulation was presented
for the best subset selection problem in linear, logistic and Cox re-
gression model (Wen et al., 2017). The best subset selection could
be solved at considerably large problem sizes within seconds. Based
on this idea, we extended the PDAS formulation to a group PDAS
(GPDAS) formulation and developed an iterative algorithm to study
the association between genetic variants and imaging phenotypes.
This article offers four methodological contributions. The first one
introduces the CSRRR model to directly solve high-dimensional
imaging genetic data within a reasonable time frame. The second

one uses the l0 norm regularizer to jointly select the desired numbers
of genetic variants and imaging phenotypes to realize the sparse
structure. This norm penalty involves the best subset selection prob-

lem, which is hard to solve traditionally. The third one aims to de-
velop an iterative algorithm based on GPDAS to solve the best

subset selection problem and achieve an accurate solution efficiently
and precisely. The fourth one reduces the computational spending
and considers complex relationships between imaging phenotypes

and genetic variants compared with traditional univariate linear
methods. Based on the simulation studies, the proposed CSRRR can

accurately estimate regression coefficients and jointly detect the
causal SNPs and the affected regions of interest (ROIs) under a var-
iety of simulation settings compared with several existing methods.

We also demonstrated the effectiveness of the proposed method in
an application of imaging genetic data analysis on ADNI data.

The rest of the article is organized as follows. Section 2 expounds
our proposed methodology for co-sparsity best subset selection in
the RRR model and presents an efficient iterative algorithm based

on GPDAS for solving the CSRRR model with joint orthogonality
constraints and non-convex sparsity. Section 3 demonstrates the

competitive numerical performance of the proposed algorithm using
simulation studies and applies our method to analyze large-scale
imaging genetic data from the ADNI database. Section 4 provides

the conclusions and discussions.

2 Method and algorithm

2.1 The CSRRR method
Suppose that we have n independent observations ðX;YÞ ¼
fðxi; yiÞ; i ¼ 1; . . . ; ng, where xi 2 R

p represents the p-dimensional
genetic variants, and yi 2 R

q denotes the q-dimensional imaging
phenotypes. The RRR model with rank constraint r is defined by

Y ¼ XCþ E; rankðCÞ � r; (1)

where C 2 R
p�q is an unknown coefficient matrix with

rankðCÞ � r, and E ¼ ð�1; . . . ; �nÞ> 2 R
n�q is a random error matrix

with independent zero mean and finite variance entries. In addition
to the centering assumption in responses and predictors, we further
assumed that the predictors are normalized with unit variance.

In imaging genetic studies, we commonly assume that only a
small subset of genetic variants contributes to any imaging pheno-

type, and that each selected genetic variant is associated with a small
subset of phenotypes (Vounou et al., 2010). Under this assumption,

both imaging phenotypes and genetic variants are sparse. Thus, the
regression coefficient C has sparsity in the row and column under
the settings of the RRR model. Given the sparse levels kx and ky, we

considered the following variable selection problem

minCjjY �X Cjj2F ; s:t:rankðCÞ � r; jjCjj2;0¼ kx; jjC>jj2;0¼ ky;

(2)

where jj � jjF denotes the Frobenius norm, rankð�Þ indicates the ma-
trix rank and jjCjj2;0 counts the number of non-zero rows in C, 1 �
r � minðrankðXÞ;q; kx; kyÞ; 1 � kx � minðp; nÞ and 1 � ky �
minðq; nÞ. For simplicity, we refer to problem (2) as the CSRRR
problem henceforth.

2.2 Algorithm
The interplay between orthogonality constraints and non-convex
sparsity in rank and sparsity creates substantial algorithmic chal-
lenges for solving the CSRRR problem in (2), for which numerous

existing algorithms can become either inefficient or inapplicable.
To eliminate the rank constraint in (2), we expressed the coeffi-

cient matrix C as a product of two matrices, i.e. C ¼ BV>, where
V 2 R

q�r is an orthogonal matrix and B 2 R
p�r. Then, the optimiza-

tion problem in (2) can be rewritten as
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minB;V jjY �XBV>jj2F; s:t:V>V ¼ Ir; jjBjj2;0¼ kx; jjVjj2;0¼ ky:

(3)

The estimates of B and V obtained from problem (3) are not
unique, i.e. B and V are not identifiable. Suppose that ðB̂; V̂ Þ
denotes the solution of (3). Then, ð ~B ¼ B̂Q; ~V ¼ V̂QÞ also solves
problem (3), where Q is any orthogonal matrix. However, given the
fact that ~C ¼ ~B ~A

> ¼ B̂Â
> ¼ Ĉ, the estimation of C is unique, i.e. C

is identifiable. This condition indicates that the division of C into a
product of B and V causes no change in the estimation.
Optimization was performed with respect to B and V, and it can be
achieved in a block-wise iteration. To be precise, given the current
estimate ðBðmÞ;VðmÞÞ for the mth iteration, the CSRRR optimization
of problem (3) consists of the following iterations:

• B-step:

Bðmþ1Þ ¼ argminBjjY �XBðVðmÞÞ>jj2F ; s:t:jjBjj2;0¼ kx:

• V-step:

Vðmþ1Þ ¼ argminV jjY �XBðmþ1ÞV>jj2F; s:t:V>V ¼ Ir;
jjVjj2;0¼ ky

:

B-step involves the best subset selection with each row being a
group or group subset selection. Particularly, by the orthogonality
constraint ðVðmÞÞ>VðmÞ ¼ Ir, the problem in B-step is equivalent to
(omitting terms not involving B)

minB2Rp�r jjYVðmÞ �XBjj2F; s:t:jjBjj2;0¼ kx: (4)

V-step involves orthogonality and sparsity constraints, which re-
sult in difficulty in directly addressing the optimization problem.
Actually, it is a sparse version of the orthogonal Procrustes problem
(Schönemann, 1966). To tackle the computational difficulty, we
first identified the non-zero row of V, i.e. Av, by ignoring the or-
thogonal constraint and searched for an optimal orthogonal solution
within a threshold parameter space T S ¼ fV 2 Rq�r : VðAvÞc ;� ¼ 0g.
By ignoring the orthogonality constraint, V-step reduces the follow-
ing orthogonality-removed problem

minV2Rq�r jjY �XBðmþ1ÞV>jj2F; s:t:jjVjj2;0¼ ky: (5)

which is also a group subset selection problem. Within the threshold
space T S, V-step involves finding an optimal VAv

that can be
derived from the following Procrustes problem

minV2RjAv j�r jjYAv
�XBV>jj2F; s:t:V>V ¼ Ir: (6)

The above problem has a closed-form solution given by singular
value decomposition (SVD), i.e. VAv

¼ UwV>w , where Uw and Vw

are obtained from the SVD of W ¼ Y>Av
XBðmþ1Þ, i.e.

W ¼ UwDwV>w .

2.2.1 Group subset selection

B- and V-steps involve the group subset selection problem with ele-
ments in each row being a group [see problems in (4) and (5), re-
spectively]. In this section, we develop a group-type generalization
of the PDAS algorithm to solve the group subset selection problem.
The PDAS algorithm was introduced to solve the best subset selec-
tion problem in parametric models with univariate response; it is
computationally efficient in identifying the best sub-model as stated
by Wen et al. (2019). The computational efficiency lies in utilizing
an active set updating strategy and fitting the sub-models through
the use of complementary primal and dual variables.

For problem (4), let B ¼ ðB>1;�;B>2;�; . . . ;B>p;�Þ
> be a coordinate-

wise minimizer and ljðbÞ ¼ jjYVðmÞ �
P

i 6¼j X�;iBi;� �X�;jb
>jj2F with

b 2 Rr be the partial loss, j ¼ 1; . . . ; p. Minimizing the objective
function ljðbÞ yields b>j ¼ Bj;� þ cB

j;�, where cB
j;� ¼ X>�;jðYVðmÞ� XBÞ=n.

The constraint jjBjj2;0 ¼ kx indicates that p� kx rows would be
forced to reach zero. To determine such p� kx rows, we considered the

sacrifices of ljðbÞ which are given by DB
j ¼ jjBj;� þ cB

j;�jj
2, when b>j

switches from Bj;� þ cB
j;� to 0. Among all the candidates, we may force

these rows to reach zero if they contribute the least total sacrifices to the
overall loss. To realize this condition, we let DB

½1� � . . . � DB
½p� denote the

decreasing rearrangement of DB
j ’s for j ¼ 1; . . . ; p. Then, the ordered

sacrifice vector at position kx should be
truncated. Combining the analytical result acquired before, we obtained

Bj;� ¼ fBj;� þ cB
j;�; if DB

j � DB
½kx �

0; otherwise:
(7)

In (7), B ¼ ðB>1;�; . . . ;B>p;�Þ
> is a primal variable, CB ¼

ðcB>

1;� ; . . . ; cB>

p;� Þ
> a dual variable and DB ¼ ðdB>

1;� ; . . . ; dB>

p;� Þ
> a reference

sacrifice. With these quantities, we defined Equation (7) as the
primal-dual condition and developed a group version of PDAS algo-
rithm for solving problem (4) following:Similarly, we can derive the
primal-dual condition for the coordinate-wise minimizer of the
orthogonality-removed problem (5) as

Vj;� ¼ f
Vj;� þ cV

j;�; if DV
j � DV

½ky �
0; otherwise;

(8)

where cV
j;� ¼ Y>�;jðXBðmÞ � YÞ=n is the dual variable of Vj;�, and DV

j ¼
jjVj;� þ cV

j;�jj
2 is the reference sacrifice, j ¼ 1; . . . ;q. As mentioned by

Wen et al. (2017), the PDAS algorithm for linear regression model
usually converges in finite steps. Thus, rather than iteratively updat-
ing the estimate of V as in the B-step, we proposed to estimate V
and the corresponding active set Av within one iteration. In this re-
gard, we could save computational time without substantial loss of
accuracy. We summarize the algorithm for solving problems (5) and
(6) as follows:

2.2.2 Algorithm for CSRRR

With the optimization of B-step and V-step, we can develop a block-
wise iterative algorithm to solve the CSRRR problem (3). The algo-
rithm is summarized as follows:To declare the convergence in Step 2
of Algorithm 3, we used the absolute tolerance method. In particu-
lar, the algorithm will stop when an absolute difference in the loss
function (3) is lower than a pre-specified threshold s, say s ¼ 0:001.

The optimization problem (2) includes a considerable number of
local optima because norm jj � jj2;0 is non-continuous and non-

Algorithm 1 GPDAS algorithm for B-step

Input: Imaging phenotypes Y, genetic variants X, the desired

levels of sparsity in genotypes ðkxÞ and the current estimate

ðB;VÞ.
(1) Set l¼0; Initialize Bð0Þ ¼ B and

Cð0Þ ¼ X>ðYV �XBð0ÞÞ=n;

(2) While BðlÞ not converged do

(2.a) Determine the sacrifies DðB; lÞj ¼ jjBj;� þ cB
j;�jj

2 for

j ¼ 1;2; . . . ; p;

(2.b) Determine the active and inactive sets for BðlÞ by

AðB; lÞ ¼ fj : DðB; lÞj � DðB; lÞ½k� g; I
ðB; lÞ ¼ AðB; lÞc;

(2.c) Update Bðlþ1Þ by

B
ðlþ1Þ
AðB; lÞ

¼ ðX>AðB; lÞXAðB; lÞ Þ
�1X>AðB; lÞYV and B

ðlþ1Þ
IðB; lÞ ¼ 0;

(2.d) Update CðB; lþ1Þ by

CðB; lþ1Þ
AðB; lÞ

¼ 0 and CðB; lþ1Þ
IðB; lÞ ¼

�
X>IðB; lÞ ðYVðmÞ �XBðB; lÞÞ

�
=n;

(2.e) l ¼ l þ 1.

Output: fB̂; ÂBg ¼ fBðlþ1Þ;AðB; lÞg.
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convex. To guarantee that the algorithm outputs the desired opti-
mum, we adopted the warm start strategy for initialization. That is,
the algorithm starts with kx ¼ 0 and ky ¼ 0 and computes the initial
estimation ðB̂ð0Þ; V̂ ð0ÞÞ. When running the algorithm with the in-
crease in kx, the results with kx � 1 are fully utilized to derive the
new initial estimators for the estimation with kx, such that the active
set is incrementally updated by adding the most promising index
determined by DB

j in (7). This warm start strategy is highly effective
in finding a stationary solution. A similar phenomenon can be
observed in the PDAS algorithm (Wen et al., 2017).

Provided that the true relevant predictor is small and p � OðenÞ,
the computational complexity of the PDAS algorithm for linear re-
gression is O(np), which is a linear time with respect to n and p
(Wen et al., 2017). Similarly, we can expect that the computational
cost of GPDAS algorithm, that is, Algorithm 1 or Algorithm 2, is
O(npq). Through enormous experiments, Algorithm 3 can converge
by several steps in most situations. The reason might be an unbiased
estimation of B and V resulting from our GPDAS algorithm.

3 Experiments

3.1 Tuning parameter selection
The performance of Algorithm 3 depends on three tuning parame-
ters in problem (2), i.e. the rank r, the sparsity kx of genetic variants

and the sparsity ky of imaging phenotypes. Numerous well-
established methods are available for the selection of tuning parame-
ters. If an individual validation dataset is available, we can deter-
mine the optimal tuning parameters by selecting those with the
smallest prediction error. However, real data are often scarce in
practice. Thus, K-fold cross validation was used to estimate the pre-
diction error and for comparison with different models. Here, the
prediction error is defined by

PEðr; kx;kyÞ ¼
1

nq
jjY �XĈðr; kx; kyÞjj2F; (9)

where Ĉðr;kx; kyÞ is the CSRRR coefficient estimator with the com-
bination of tuning parameters fr;kx; kyg.

The optimal tuning parameters were determined among a set of
three-dimensional grid points. For each triple combination
fr; kx;kyg, the CSRRR estimator was obtained via Algorithm 3, and
the prediction error was calculated. We then selected the optimal
model with the smallest prediction error. In simulations, we calcu-
lated the prediction error on a validation dataset to minimize the in-
fluence of tuning parameter selection methods on performance
comparison. In our real data analysis, we used nested cross valid-
ation to compute the prediction error.

3.2 Simulation studies
In this section, we evaluated the performance of the proposed
method on simulated data and compared the proposed method with
four others: (i) threshold SVD method (TSVD, Ma et al., 2014); (ii)
sparse-reduced rank regression (sRRR, Mishraet al., 2017); (iii)
SCCA (Witten et al., 2009) and (iv) fast voxel-wise genome-wide as-
sociation analysis (FVGWAS, Huang et al., 2015). The former three
are the widely used multivariate methods in imaging genetics study,
whereas the last one is a state-of-the-art univariate method.

3.2.1 Simulation settings

The SNP data were generated as follows. The linkage disequilibrium
(LD) blocks between SNPs were simulated by the default method of
Haplotview and PLINK (Barrett et al., 2005; Gabriel et al., 2002;
Purcell et al., 2007). We first simulated n¼1000 subjects by ran-
domly combining the haplotypes of HapMap CEU subjects. We
then used PLINK to determine the LD blocks based on these sub-
jects. Finally, we randomly selected 150 blocks and combined the
haplotypes of HapMap CEU subjects in each block to form geno-
type variables. In each block, we randomly drew 10 SNPs, achieving
1500 SNPs for each subject. To avoid collinearity in the model, we
screened out the SNPs with the same values. After this quality con-
trol process, we attained n¼1000 observations and 999 SNPs in
total.

For the imaging phenotypes, we generated ROI data from Model
(1) with C ¼ BV>. Matrix B 2 R

p�r corresponds to the coefficients
of latent factors of SNPs, whereas matrix V 2 R

q�r corresponds to
those of latent factors of ROIs. Therefore, the zero rows in B and V
represent irrelevant ROI–SNP pairs. In our simulation, we pre-fixed
the first ky ROIs as the affected ROIs associated with the causal
SNPs and regarded the first kx SNPs as the causal SNP. This condi-
tion indicates that the first kx rows of the low-rank matrix B and the
first ky rows of the low-rank matrix V were set to non-zero effect
magnitude. To fully evaluate the stability among different associa-
tions between imaging phenotypes and genetic variants, we drew the
non-zero elements from Uniform distribution Uð�1; 1Þ or standard
Normal distribution N(0, 1). To mimic the ADNI data, we fixed the
dimension of ROIs as q¼100, the rank as r¼3 and the number of
affected ROIs as ky ¼ 10. The number of causal SNPs ranged from
kx ¼ 30 to kx ¼ 150 with a step size of 30 to explore the effect of kx

on the performance of different methods.
To fully evaluate the influence of noise E on the performance,

we considered the following generation mechanisms:

Case 1: E � Nð0;RÞ, R ¼ I;

Case 2: E � Nð0;RÞ, Rij ¼ 0:5ji�jj, i; j ¼ 1; . . . ; q;

Algorithm 3 Algorithm for CSRRR problem

Input: Imaging phenotypes Y, genetic variants X, rank r, the

desired levels of sparsity in genotypes ðkxÞ and phenotypes

ðkyÞ.

1. Initialize m¼0, and Vð0Þ as the eigenvectors associated

with the top rth eigenvalues of Y>Y.

2. While the value of objective function in (3) not converged

do

(1) Run Algorithm 1 with kx and ðBðmÞ;VðmÞÞ;
Output fBðmþ1Þ;AðB;mþ1Þg.

(2) Run Algorithm 2 with ky and Bðmþ1Þ;

Output fVðmþ1Þ;AðV;mþ1Þg.
(3) m ¼ mþ 1.

Output: ðĈ; B̂; V̂ ; ÂB
; ÂVÞ

Algorithm 2 One-step GPDAS algorithm for V-step

Input: Imaging phenotypes Y, genetic variants X, the desired

levels of sparsity in phenotypes ðkyÞ and the current estimate

of B.

1. Compute cV
j;� ¼ Y>�;jðXB� YÞ=n and DV

j ¼ jjVj;� þ cV
j;�jj

2 for

j ¼ 1; 2; . . . ;q;

2. Determine the active and inactive sets for Vðmþ1Þ by

Av ¼ fj : DV
j � DV

½ky �g; Iðmþ1Þ
v ¼ fj : DV

j < DV
½ky �g;

3. Let W ¼ Y>Av ;�XB and perform SVD of W, i.e.

W ¼ UwDwV>w ;

4. Determine V by VAv
¼ UwV>w and VIv

¼ 0

Output: fV̂ ; ÂVg ¼ fV;AVg.
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Case 3: E, E � Nð0; 4� RÞ, Rij ¼ 0:5ji�jj, i; j ¼ 1; . . . ; q;

Case 4: E � v2ð3Þ.

Cases 1 and 2 investigate the finite performance with different
correlation; Case 3 illustrates the influence by small signal-to-noise
ratios. Case 4 considers the performance with the noise being drawn
from non-Gaussian and skewness distribution.

Overall, 40 different scenarios of simulation settings and 100
replications were conducted for each setting. In each replication, we
randomly divided the 1000 subjects into sets: a training dataset with
a size of 700, a validation dataset with a size of 200 used for deter-
mining the optimal tuning parameters by the prediction error and a
test dataset with a size of 100. For each coefficient matrix estimator
Ĉ, we measured the estimation and predictive accuracy in terms of
the mean-squared error:

Est ¼ jjC� Ĉjj2F; Pred ¼ jjXtestC�XtestĈjj2F=nq;

where Xtest is obtained from the test dataset. We also reported the
estimated number of causal SNPs k̂x and the estimated number of
affected ROIs k̂y . The performance of relevant variable detection
was evaluated by sensitivity and specificity. For SNPs or predictors,
the sensitivity and specificity are defined as

Senx ¼ jAx \ Âx j
jAxj

; Spex ¼ jIx \ Îx j
jIxj

;

where Âx and Îx are the selected casual SNPs set and non-casual
SNPs set, respectively. Ax and Ix are the true casual SNPs set and
non-casual SNPs set, respectively. Similarly, for ROIs or responses,
the sensitivity and specificity are defined as

Seny ¼ jAy \ Ây j
jAyj

; Spey ¼ jIy \ Îy j
jIyj

;

where Ây and Îy are the selected affected and non-affected ROI
sets, respectively. Ay and Iy are the true affected and non-affected
ROI sets, respectively.

3.2.2 Simulation results

The average results are reported over 100 repetitions in
Supplementary Tables. Supplementary Tables S1–S8 summarize the
results of all scenarios. Given that SCCA and FVGWAS offer no co-
efficient matrix as output, the values of Pred and Est are unavailable
for these specific methods. In addition, FVGWAS based on hypoth-
esis test method needs to pre-specify the selected number of causal
k̂x and affected ROIs k̂y . Thus, for each scenario, we set the true kx

and ky as corresponding estimated k̂x and k̂y , respectively, and
opted not to report the results.

The values of Pred, Est and bias in k̂x increased as kx increased
for all methods except SCCA and FVGWAS, where the values were
unavailable, and the Senx value from FVGWAS decreased signifi-
cantly. These findings suggest that a high kx value or number of
causal SNPs leads to increased challenges in effective detection and
parameter estimation. However, in all cases, our CSRRR method
consistently yielded better performance than the other methods in
terms of prediction and estimation error with better Pred values and
smallest Est values. For the variable selection performance, the esti-
mated number of causal SNPs k̂x and the estimated number of
affected ROIs k̂y from our method are always close to the true val-
ues. This condition suggests that our CSRRR approach is less influ-
enced by the number of true causal SNPs than the other existing
methods.

Given the influence of different correlations within the noise ma-
trix E, the results in Supplementary Tables S1–S4 remained almost
the same for all methods. In Case 3, when the variance of noise was
doubled, the measurements for all methods worsened compared
with those in Case 2. Still, among these methods, our CSRRR con-
sistently yielded a model with higher sensitivity and specificity.
Moreover, compared with sRRR and TSVD, CSRRR had the small-
est reduction in terms of prediction and estimation accuracy. In

Case 4, in which a non-Gaussian noise was considered, both sRRR
and TSVD showed poor performance in selecting related ROI–SNP
pairs and estimating the regression coefficient matrix. By contrast,
CSRRR yielded the smallest prediction error and estimation error
and excellently identified the true causal SNPs and affected ROIs.

The above analysis reflects that the generation mechanism of E
considerably influences the performance, whereas CSRRR is com-
petitive for its anti-interference capability. We also examined the ef-
fect of different generation mechanisms of non-zero elements in C
by comparing the results in Supplementary Tables S1–S8. The
results from the uniformly distributed coefficients are expectedly
better than those from normally distributed coefficients because the
variance in non-zero elements in C is notably smaller than that in
uniform distribution. In summary, the proposed CSRRR method
has superior accuracy and stability in prediction, estimation accur-
acy and selection of relevant ROI–SNP pairs. The results suggest
that our CSRRR approach is suitable for use in real data analysis.

3.2.3 Computation time

In this section, we present three numerical experiments to show how
the proposed method scales with the number of subjects n, dimen-
sion of phenotypes q and the number of SNPs p. Following the set-
tings in Section 3.2.1, we generated simple simulated data with rank
r¼3, number of causal SNPs kx ¼ 100 and number of affected
ROIs ky ¼ 50. The first kx rows and ky columns of the coefficient
matrix C 2 R

p�q and noise matrix E 2 R
n�q were drawn from the

standard Normal distribution. The baseline parameters for the sam-
ple size n, the number of SNPs p and the number of ROI q is
ðn;p; qÞ ¼ ð500; 1000;100Þ. In each experiment, we varied one par-
ameter while fixing the other two at the baseline values. Specifically,
we allowed p to increase from 6000 to 15 000 by a step size of 1000
in Experiment 1, let q increase from 500 to 5000 by a step size of
500 in Experiment 2 and enabled n to increase from 1000 to 10 000
by a step size of 1000 in Experiment 3.

Figure 1 summarizes the results. The computation time increased
at a linear rate of n, p and q, coinciding with the analysis of compu-
tational complexity in Section 2.2.2. Furthermore, our proposed
yield is a sparse estimator obtained in several seconds with p in
10 000 s, and it shows the possibility of our proposal in handling
high-dimensional data.

3.3 ADNI data analysis
3.3.1 Data processing

To illustrate the usefulness of the proposed method, we considered
the genetic data and structural magnetic resonance imaging (MRI)
scans provided by ADNI database (http://adni.loni.usc.edu/). ADNI
was launched in 2003 by the National Institute on Aging, the
National Institute of Biomedical Imaging and Bioengineering, the
Food and Drug Administration, private pharmaceutical companies
and non-profit organizations as a $60 million and 5-year public–pri-
vate partnership. The primary goal of ADNI was to test whether ser-
ial MRI, PET and other biological markers are useful in clinical
trials of mild cognitive impairment (MCI) and early AD. The deter-
mination of sensitive and specific markers of very early AD progres-
sion is intended to aid researchers and clinicians to develop new
treatments and monitor their effectiveness and estimate the time and
cost of clinical trials. ADNI subjects aged 55–90 years old and from
over 50 sites across the USA and Canada participated in the re-
search; more detailed information is available at (www.adni-info.
org).

Data from 708 (421 men and 287 women, aged 75.42 6

6.76 years) subjects with the structural MRI data of 164 AD, 346
MCI and 198 normal control provided by the ADNI dataset were
used. All MRI data were processed under the following steps to ex-
tract ROI data from the MRI data: (i) non-parametric non-uniform
bias correction for image intensity inhomogeneity correction (Sled
et al., 1998); (ii) skull stripping (Wang et al., 2014) and warping a
labeled template to each skull-stripped image for the removal of the
cerebellum (aBEAT in version 1.0, http://www.nitrc.org/projects/
abeat); (iii) registration of all images to a common template using
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the 4 D-HAMMER method (Shen and Davatzikos, 2004); (iv) auto-

matic labeling of 93 ROIs on the template (Tzourio-Mazoyer et al.,
2002); (v) ROI label projection from the template image to each
MRI image and (vi) calculation of the volume of each ROI in the
labeled image.

We considered the 818 subjects’ genotype variables, which
includes 620 901 SNPs, acquired using the Human 610-Quad
BeadChip (Illumina, Inc., San Diego, CA) in the ADNI database.
We performed quality control and SNP screening on the SNP data

as introduced in a previous study (Huang et al., 2015). Moreover,
we imputed the remaining missing genotype variables as the modal
value. After these procedures, we retained 708 subjects, and each
subject had 501 584 SNPs during the subsequent analysis.

3.3.2 Data analysis

We considered the volumes of 93 ROIs as multivariate phenotypic
responses to carry out ADNI data analysis via CSRRR. Given that

only a small set of SNPs is effective and causal, instead of using the
whole set of 501 584 SNPs, we focused on important SNPs that
have significant associations with the volumes of 93 ROIs in this
study. To detect these important SNPs, we first pre-screened the
whole set of 501 584 SNPs based on the P-values obtained from

multivariate analysis of variance (MANOVA). We used Pillai’s trace
test in MANOVA because it is often considered a robust and power-
ful test statistic (Tabachnick et al., 2007). Specifically, we regressed
all volumes of 93 ROIs to each SNP and selected SNPs correspond-
ing to the first 1000 minimum P-values as the predictors of our algo-
rithm. Moreover, to eliminate the influence of covariates (an
intercept, gender, age, whole brain volume and the top five principal
component scores in SNPs), we regressed ROIs to these covariates
and regarded the resulting residuals as the responses of our
algorithm.

With the pre-screening procedure, the P-values of the whole set
of 501 584 SNPs were calculated. Figures 2 and 3 show the
Manhattan and QQ plots of the GWAS results of all volumes of 93
ROIs, respectively. The Manhattan plot is a plot of the � log 10ðPÞ-
values of the association statistic on the y-axis versus the chromo-
somal position of SNPs on the x-axis. SNPs with high � log 10ðPÞ-
values represent high associations with ROIs. In Figure 2, three
SNPs are associated with the 93 ROIs in the pre-screening procedure
at the 10�5 significant level. The QQ plot shows the observed asso-
ciation � log 10ðPÞ-values for all SNPs on the y-axis versus the
expected uniform distribution of � log 10ðPÞ-values under the null
hypothesis stating the lack of association on the x-axis. As shown in
Figure 3, the observed association � log 10ðPÞ-values fit well with
the expected � log 10ðPÞ-values. The � log 10ðPÞ-values in the upper-
right tail of the distribution showed a significant deviation, suggest-
ing strong associations between these SNPs and the 93 ROIs.

In this study, rank r, the number of causal SNPs kx and the num-
ber of affected ROIs ky should be determined in our optimization
problem. We set the maximum range ðrmax; kxmax

;kymax
Þ of these

parameters to 10, 30 and 30. Thus, 9000 candidate parameter com-
binations ðr;kx; kyÞ were obtained in total. We applied two nested
cross-validation loops to evaluate the proposed method and select
the optimal parameters, where 3- and 5-fold cross validations were
used for the external and inner loops, respectively. For the external
3-fold cross validation, all 708 samples were divided into three sub-
sets with the same proportion of each class label to retain the con-
sistency of data distribution with the whole 708 samples. For each
run, we successively selected one of the three parts as the testing set
to calculate the prediction error, whereas the remaining samples in
the other two subsets were combined and used as the training set for
model fitting. Moreover, parameter tuning was evaluated with the
inner 5-fold cross validation of the training set. Specifically, the
training set can be further split into a training and validation parts.
By varying the values of the different parameters, the proposed
model was fitted, and the coefficient matrix was estimated using the
samples in the training part. The prediction errors were obtained
during validation. This process was repeated five times. Therefore,
for each parameter combination, we can achieve an error by averag-
ing the five prediction error values. Finally, we used the training set
and the parameter combination with the smallest average error to fit
the model again and calculated the prediction error in the testing
set. Then, we performed the external 3-fold cross validation to ob-
tain three prediction errors and selected the parameters with the
minimum prediction error. With these procedures, we finally
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obtained the three optimal parameters, whose values were r̂ ¼
2; k̂x ¼ 6 and k̂y ¼ 13, respectively.

The six selected SNPs are listed in Table 1, where the minimum
P-value of each SNP is the smallest P-value by regressing the SNP to
each selected ROI. From Table 1, the minimum P-value was
achieved by SNP rs2075650 in translocase of outer mitochondrial
membrane 40 homolog (TOMM40). Thus, we regressed each
selected ROI to SNP rs2075650 to calculate the P-values between
this SNP and 13 selected ROIs in Table 2. As shown from the P-val-
ues in Table 2, the TOMM40 gene is significantly related to amyg-
dala and hippocampus, which play primary roles in the processing
of memory and cognition. Therefore, the TOMM40 gene, amygdala
and hippocampus are highly related to AD. Figure 4 shows the maps
of several selected slices of � log 10ðPÞ-values for the selected ROIs
corresponding to the SNP rs2075650. In the figure, symmetric clus-
tering across the left and right hemispheres was inspected in selected
13 ROIs. For most brain regions, the brain structures are highly
symmetric between hemispheres. Therefore, symmetric associations
of SNPs and ROIs can be biologically observed.

The relationship between TOMM40 gene and AD has been dis-
covered and confirmed in several biomedical and clinical studies
(Huang et al., 2015). Figures 2 and 3 indicate that several SNPs that
were considered significant. This strong interaction weakened the ef-
fect of other SNPs on ROI. Thus, the effects of other SNPs on AD
are not conducive to identification. To identify more meaningful
SNPs and ROIs related to AD, we set a suitable rank r¼3 and dir-
ectly performed Algorithm 3 on 30 SNPs and their corresponding 20
ROIs, i.e. kx ¼ 30 and ky ¼ 20.

Table 3 lists the selected 30 important SNPs associated with 20
ROIs, including the corresponding SNPs, CHR IDs, base pair val-
ues, minimum P-values and genes. Among the 30 SNPs, the follow-
ing genes were detected: TOMM40 in CHR 19 is related to AD;
PPM1H in CHR 12 is linked with increased AD risk (Badhwar
et al., 2017); variation close to MTNR1A (CHR 4) is a shared genet-
ic risk factor for AD in old age (Sulkava et al., 2018); ZNF827 in
CHR 4 is associated with APoE4 non-carriers of AD (Jiang et al.,
2015); RPA1 in CHR 17 is identified to late-onset AD (Cong et al.,
2017). Moreover, we observed several SNPs with potential risks and
whose influence on AD has not been revealed in literature. For ex-
ample, SLC2A1 is related to brain development and function (Gao
et al., 2012); SGCZ and TSPAN18 are reported to be associated
with schizophrenia and bipolar disorder (Chen et al., 2017);
LRRTM4 is linked to cognitive impairment (Chen et al., 2019).
Therefore, further investigation should be conducted on these genes
in the progression of AD in the future. Such findings might be bene-
ficial to the discovery of new AD-related genetic variations and the
early prediction and treatment of this disease.

Figure 5 shows the � log 10ðPÞ-values of significant SNP–ROI
pairs. As shown in Figure 5, symmetric ROIs across the left and
right hemispheres were inspected in 20 ROIs. Among these ROIs,
hippocampus, amygdala, parahippocampal gyrus, entorhinal cortex
and perirhinal cortex are related to memory; superior temporal
gyrus is associated with auditory processing, social cognition proc-
esses and function of language; middle temporal gyrus is linked to
language processes; inferior temporal gyrus is one of the higher lev-
els of the ventral stream of visual processing. These findings are con-
sistent with those reported in AD prediction and AD imaging
genetics studies (Huang et al., 2015; Ning et al., 2018; Zhou et al.,
2019). Therefore, the detected ROIs in our study are considered
trustworthy.

4 Discussion

In this article, we developed a novel co-sparse best subset selection
procedure in multivariate RRR model for the efficient association
analysis between genetic variants and imaging phenotypes. Our
CSRRR approach accurately identifies the causal SNPs and affected
the ROIs simultaneously via l0 norm constraints. The simulation
studies demonstrated that our method achieved competitive accur-
acy and superior stability in estimating regression coefficients and
detected significant ROI-SNP pairs compared with the existing
methods. Finally, we applied CSRRR to the association analysis in

Table 1. Six selected SNPs, and ‘–’ in the table indicates the item was not found to correspond to genes

CHR SNP BP Gene min P-value

2 rs10174624 152 599 705 – 1.252e–04

4 rs2555646 175 437 613 HPGD 1.440e–04

8 rs1866698 137 522 988 – 3.805e–04

11 rs835989 44 949 238 TSPAN18 2.915e–05

12 rs7297570 95 471 330 FGD6 1.688e–04

19 rs2075650 45 395 619 TOMM40 2.419e–09

Table 2. P-values between SNP rs2075650 and 13 selected ROIs

ROI P-value ROI P-value

1 Amygdala right 2.419e–09 2 Hippocampal formation left 4.532e–08

3 Hippocampal formation right 1.141e–07 4 Entorhinal cortex right 2.747e–06

5 Amygdala left 6.370e–06 6 Uncus left 9.752e–06

7 Superior temporal gyrus right 8.832e–05 8 Insula left 1.214e–03

9 Middle temporal gyrus right 1.350e–03 10 Uncus right 1.584e–03

11 Middle temporal gyrus left 1.739e–03 12 Superior temporal gyrus left 3.661e–03

13 Medial occipitotemporal gyrus right 3.175e–01

Fig. 4. Selected slices of � log 10ðPÞ-values for the selected ROIs corresponding to

the SNP rs2075650
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imaging genetic data from the ADNI study and obtained meaningful
results. Therefore, the CSRRR approach is a valuable statistical
toolbox for high-dimensional imaging genetic analysis.

Several potential issues should be addressed in future research.
First, the brain structures are highly symmetric between hemispheres
for most brain regions. Our proposal detected symmetric association
between SNP rs2075650 and ROIs across the left and right hemi-
spheres (Fig. 4) although we did not incorporate this symmetric in-
formation into Procedures (2) or (3). We can also consider this
information by representing the symmetric structure as a network
graph G ¼ ðV;EÞ, where V denotes the ROIs, and E denotes the set
of undirected edges. Specifically, an edge exists between two ROIs if
they are symmetric. To characterize the network G, we defined the
adjacency matrix of G by A ¼ ðaijÞq�q, where aij ¼ 1 if ROI i and j
are linked, and aij ¼ 0 otherwise. Then, the Laplacian of network G
was defined by L ¼ D� A, where D is the diagonal matrix with di-
agonal element di ¼

Pq
i¼1

aij. In this manner, we can extend the pro-
posed method to incorporate the symmetric information across the
left and right hemispheres following

minCjjY �X Cjj2F þ ktrðCLC>Þ
s:t: rankðCÞ � r; jjCjj2;0 ¼ kx; jjC>jj2;0 ¼ ky;

where kð> 0Þ is a hyperparameter to control the amount of regular-
ization for the symmetric structure, and tr(M) denotes the trace of
matrix M. We expect that a similar algorithm, similar to the one pre-
sented in this article, will be applied for solving the above problem.

Second, in ADNI data analysis, we removed the exact collinear-
ity before analyzing the data to guarantee the identification of coef-
ficient matrix C. Instead, we dealt with the collinearity problem

where the pair-wise correlations between covariates are extremely

high by reformulating problem (2) such as that in elastic net (Zou
and Hastie, 2005). A regularization term jjCjj2F ¼ ktrðC>CÞ was

added to the objective function in problem (2). With this reformula-
tion, we can solve not only the collinearity problem but also select
groups of correlated variables together, such as the SNPs in the same

genes or genes in the same biological ‘pathway’. Here, we attempted
to provide a general and basic framework for co-sparse subset selec-

tion. Our future investigation will focus on the collinearity problem.
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